Last Updated S012019

MSR501

Unit Name INTRODUCTION TO SYSTEM SAFETY AND RISK MANAGEMENT

 

Unit Code MSR501
Unit Duration 1 Term (online) or 1 Semester (on-campus)
Award

Graduate Diploma of Engineering (Safety, Risk and Reliability) Duration: 1 year

Master of Engineering (Safety, Risk and Reliability) Duration: 2 years   

Year Level One
Unit Creator / Reviewer N/A
Core/Elective: Core
Pre/Co-requisites Nil
Credit Points

3

Grad Dip total course credit points = 24 (3 credits x 8 (units))

Masters total course credit points = 48 (12 credits (Thesis) + 3 credits x 12 (units))

Mode of Delivery

Online or on-campus.

Combination of modes: Online synchronous lectures; asynchronous discussion groups, videos, remote and cloud-based labs (simulations); web and video conferencing tutorials. High emphasis on personal and group self-study. 

Unit Workload

Total student workload including “contact hours” = 9 hours per week:

Total student workload including “contact hours” = 10 hours per week:

Lecture – 1 hour

Tutorial Lecture - 1 hour

Practical / Lab - 1 hour (if applicable)

Personal Study recommended - 7 hours

Unit Description and General Aims

System Safety can be defined in simple language as “organised common sense [George Mueller]”. It is a planned, disciplined and systematic approach to identifying, analysing, eliminating and controlling hazards by analysis, design and management procedures throughout a system’s life cycle. System Safety starts at the earliest concept development stages and continues through the design, production, testing, operational use and disposal stages. Risk Management on the other hand aims to control an existing or an emerging process, policy, device that acts to minimize negative risk or enhance positive opportunities. It is accepted that all risks cannot be eliminated completely i.e., there will be some residual risk. Risk assessments aim to determine how much risk remains and then to make convincing arguments for accepting the residual risk or reduced reliability (e.g. excessive cost to ensure 100% supply reliability as compared to reasonable cost to ensure 98% supply reliability, and understanding when the difference between 98% and 100% is trivial or vital). “We all know that safety should be an integral part of the systems that we build and operate. The public demands that they are protected from accidents and the following consequences, yet the two main constituents – industry and government – do not always know how to reach this common goal”.

Learning Outcomes

On successful completion of this Unit, students are expected to be able to:

1. Define System Safety, Safety Life Cycle and Safety Management System

2. Differentiate between Safety / Hazard / Risk Analysis techniques and applications

3. Identify and learn from ‘Black Swan or Extreme Event – Fukushima Nuclear Disaster’

4. Investigate Government Regulations and Safety oversight requirements

5. Reflect on a Safety System Review and Audit – ‘Waterfall Rail Accident’

6. Improving oversight through System Safety – ‘US Federal Aviation Administration’

Student assessment

Assessment Type

(e.g. Assignment - 2000 word essay (specify topic) Examination (specify length and format))

When assessed

(eg Week 5)

Weighting (% of total unit marks) Learning Outcomes Assessed

Assessment 1

Type: Quiz

Word length: n/a

Topic: Fundamental concepts of System Safety, Safety Life Cycle and Safety / Risk Analysis and Major incident investigation.

Week 5 20% 1, 2

Assessment 2 - mid-semester test

 Type: Report (Midterm Project) [This will include a progress report; literature review, hypothesis, and methodology / conclusions]

Word length: 2000

Topic: ‘Shortcomings of existing Safety Management Systems in preventing inconvenience to public’ based on reports and enquiries.

Week 9 25% 2, 3, 4, 5

Assessment 3

Type: Report (Final Project) [If a continuation of the midterm, this should complete the report by adding sections on: methodology, implementation / evaluation, verification / validation, conclusion / challenges and recommendations / future work. If this is a new report, all headings from the midterm and the final reports must be included.]

Word length: 4000

Topic: Analyse and report on a major ongoing accident investigation in relation to existing Safety Management System and corresponding regulatory Authority’s Safety oversight.

Week 12 35% 1, 2, 3, 4, 5, 6

Assessment 4

Type: Examination
Example Topic: All topics with an emphasis on Logarithms and Matrices
An examination with a mix of detailed report type questions and/or simple numerical problems to be completed in 3 hours

Final Week 40% 1 - 11

 Practical Participation

 Compare and contrast Safety Life Cycles and Safety Management Systems adopted by different industries in your country.

Continuous 15%

Class Participation

Continuous 5% 1, 2, 3, 4, 5, 6

 

Prescribed and Recommended readings

Suggested Textbook

N. J. Bahr, System Safety Engineering and Risk Assessment – A practical approach, 2 nd edition, CRC Press, 2014

 

Reference Materials

Number of peer-reviewed journals and websites (advised during lectures).

Some examples are listed below.

  •  N. G. Leveson, System Safety Engineering, MIT
  •  IDC notes and Reference texts as advised.
  •  Other material advised during the lectures

Unit Content

One topic is delivered per contact week, with the exception of part-time 24-week units, where one topic is delivered every two week.

 

Topic 1

Introduction to Safety Engineering and Risk management

1. Why do we need Safety Engineering? (A brief review of Safety performance and Safety goals and how it has evolved over time)

2. Brief history of Safety

3. What is Safety Analysis?

4. System Safety and Risk Assessment

5. Government safety regulations vs. Industry’s safety point of view

 

Topic 2 and 3

Defining terminology and Concepts

1. Makeup of an accident

2. How ‘safe is safe enough’?

3. What is Hazard and Risk?

4. System Safety vs. Safety Management System

5. System Safety Process

6. Hazard Reduction

7. Safety Maturity Model

8. Leading and Lagging Safety Performance Indicators

9. Standards in Safety – Government / Industry / Regional / International

Topic 4 and 5

Safety Analysis – How is it used (and potentially not used) in different industries?

1. Manufacturing

2. Consumer Products

3. Chemical Process

4. Oil and Gas

5. Aviation

6. Mass Transit – Impact on pedestrians and natural environment

7. Military and Space

8. Commercial Nuclear Power

 

Topic 6

Risk Assessment

1. What is ‘Risk’, ‘Risk Perception’ and ‘Risk vs. Dread’

2. Risk Assessment Methodology, identifying risk in a system and communicating issues of control, safety, residual risk and maximum reasonable exposure to stakeholders.

3. Risk Evaluation Models – qualitative vs. quantitative, deterministic vs. stochastic, probabilistic, risk analysis model, developing accident scenarios and initiating events, event trees, risk profiles, consequence determination, uncertainty

4. Calculating Safety Costs

 

Topic 7 and 8

Safety Management System (SMS)

1. System Life Cycle

2. Developing a robust Safety Management System – elements of a SMS, organisational management and safety

3. System Safety Program

4. Operational System Safety Plans and Procedures

5. Closed-loop Process SMS

6. Safety Governance

7. Safety Culture

8. Lessons from the Titanic, and Costa Concordia, a repeat nearly 100 years later showing a lack of a safety culture

 

Topic 9

Hazard Analysis

1. Methodology

2. Preliminary Hazard list

3. Hazard analysis – System and sub-systems

4. Facility Hazard analysis

5. Operations Support Hazard analysis

 

Topic 10

Other Analysis Techniques

1. Process Safety Analysis – PHA, HAZOP, What-if Analysis

2. Safety check-lists

3. Fault tree Analysis

4. Human Factors Safety Analysis

5. Software Safety Analysis

6. Energy Trace Barrier Analysis

7. Cause and Consequence Analysis

8. Root Cause Analysis

9. Bow-Tie Analysis

10. Dispersion Modelling

11. Job Task Analysis/Job Safety Analysis

 

Topic 11

Government regulations and Safety oversight

1. Safety regulatory oversight covering key components and different regulatory oversight models

2. Safety oversight functions and governance – safety service delivery, crisis management, safety policy, audits and compliance, risk management, accreditation, safety promotion, independent accident investigation boards and common mistake is government oversight programs

Topic 12

Project and Unit Review In the final week students will have an opportunity to review the contents covered so far. Opportunity will be provided for a review of student work and to clarify any outstanding issues. Instructors/facilitators may choose to cover a specialized topic if applicable to that cohort.

Software/Hardware Used

Software

  • Software: N/A

  • Version: N/A

  • Instructions:  N/A

  • Additional resources or files: N/A

Hardware

  • N/A